Refrigerants
Green Point UK, BITZER UK’s compressor services arm, is remanufacturing air conditioning compressors used in train HVAC systems to original factory specification, enabling customer Siemens Mobility to keep train fleets operating in tip-top condition and achieve its environmental and sustainability goals. To date, Green Point UK has remanufactured more than two hundred high-efficiency BITZER model 2FC-3.2Y-40S and ECOLINE 2FES-3Y-40S semi-hermetic compressors, key components of train HVAC...
Marcone Group, a renowned national distributor of appliance, HVAC, plumbing, commercial kitchen and pool/spa parts and equipment, announced that marketing executive - Mary Jo Hann was named to the 'Top Women in HVAC' list by ACHR News. As Vice President of Enterprise Marketing, Hann was one of 13 women nationwide selected by the publication for their contributions to the traditionally male-dominated industry. Prior roles of Mary Jo Hann "There’s no doubt that Mary Jo is a standout withi...
Modine, a globally renowned HVAC manufacturer, announces they will showcase their newest heating solutions, including the recently updated line of Hot Dawg® Unit Heaters, at the 2024 Heating Air-Conditioning Refrigeration Distributors International (HARDI) Conference in Atlanta, on Dec. 7-10, 2024. During the conference, Modine will highlight enhancements to the rest of the Hot Dawg® line, which offers improved performance and efficiency. The gas-fired units have new features, including...
As global energy systems face increasing pressure to decarbonize, Genius Energy Lab, an innovator in ground source heat pump (GSHP) technology, has released its 2024 GSHP Industry Report. sustainable solutions This in-depth study offers critical insights into the factors driving the adoption of GSHPs, highlighting both the opportunities for long-term energy savings and the regulatory and cost challenges still hindering their widespread use. As the push for sustainable solutions intensifies, t...
Hamworthy Heating, a trusted British manufacturer and supplier of commercial heating and water products, includes in their comprehensive product range the Stratton mk3 wall-hung condensing boiler. When installed on a Hamworthy low-height frame and header kit, outputs from 40-70 kW offer the most compact cascade configuration available on the market. Stratton mk3 boilers Considerably smaller than other well-known manufacturers' models, Stratton mk3 boilers feature a compact footprint, with mod...
Wauseon Machine, a globally renowned provider of automation solutions, tube forming technologies, precision machining and fabrications, highlights its End-to-End Precision Machining and Fabrication Support services. Designed to address some of the most complex and pressing challenges faced by manufacturers, Wauseon Machine’s comprehensive suite of services now includes advanced capabilities such as Saw Cutting, Welding, Heat Treating and Tempering, Laser Etching, Rapid Prototyping, Revers...
News
Kanthal, a global pioneer in industrial heating technology, has won the prestigious industry award ‘E-prize’ in the category of energy optimization for its technology that helps companies and industries transform to fossil-free production. Organized by Sweden's largest business newspaper, Dagens Industri, and the newspaper - Aktuell Hållbarhet, together with the energy group - E.ON, the prize is awarded to the sharpest innovations for the 16th year in a row. a modern and innovative approach The jury's motivation read: With a 90-year-old invention combined with a modern and innovative approach, this year’s winner is paving the way for a fossil-free industry through the electrification of high-temperature processes. Natural gas is replaced with efficient electric heating in industrial applications, enabling fossil-free production processes that improve both the environment and working conditions. The company is a global pioneer and a key player in sustainable industrial electrification, contributing to the production of fossil-free steel and the sustainable manufacturing of solar cells and batteries. electrification "We are very proud that the jury chose us and our technology for this prize. With our technology, industries around the world such as steel, battery, semiconductor, and glass can use electricity instead of fossil fuels for their industrial heating processes, which can contribute to major emission savings in the global industry," says Robert Ståhl, President of Kanthal. He adds, "The technology has a 100-year legacy of innovative development and is more relevant than ever. There is a large potential and more and more industries are making use of it." fossil-free electricity "The greatest opportunities of the energy transition are still ahead of us. It is necessary to level up in both temperature and scale and find completely new solutions for industries such as steel and cement," says Nicolai Schaaf, Sustainability Manager at Kanthal. He adds, "In addition, our products themselves have become a huge lever for this transition: Not only do they reduce the emissions of the customers – they also contribute to the expansion and improved management of fossil-free electricity." increase efficiency and reduce CO2 Kanthal's products enable the electrification of various industrial processes that require high temperatures Kanthal's products enable the electrification of various industrial processes that require high temperatures. By replacing fossil fuels with electricity, companies can increase efficiency and reduce CO2 emissions or eliminate them if fossil-free electricity is used. The technology has its roots in a 93-year-old innovation, but with the world's focus on climate change and the need to phase out fossil fuels the solutions can now reach their full potential. heating solutions Industrial heating processes are found in all manufacturing industries such as steel, aluminum, glass, and cement and today are mostly powered by burning fossil fuels. These processes are invisible to the consumers but account for around 10% of the world's total CO2 emissions and 75% of Europe's industrial CO2 emissions. In addition to reducing emissions in various industries, Kanthal's heating solutions are also crucial components in the manufacture of advanced solar cells, semiconductors, and batteries.
As the UK embarks on its ambitious journey to cut emissions by 81% by 2035, Enviricard is stepping up to play a pivotal role in this environmental revolution. With a mission to eliminate plastic cards from the market, Enviricard introduces a ground-breaking alternative: eco-friendly paperboard cards that promise to transform the landscape of card usage across various sectors. Enviricard's innovative solution Plastic cards, ubiquitous in the daily lives, contribute significantly to carbon emissions. The production of a single payment card generates an average of 150 grams of CO2 equivalent greenhouse gas emissions, highlighting the urgent need for sustainable alternatives. Enviricard's innovative solution offers a viable path forward, aligning with the UK's net-zero objectives and addressing the pressing challenges outlined in the UK Plastics Pact Annual Progress Report. Net-zero target journey Graham Lycett, Founder of Enviricard, emphasizes the importance of this transition: "We want to reach big businesses who rely on Facilities Management companies for the supply of the little white plastic cards used for name badges, staff ID, access control, membership, and loyalty schemes." He adds, "Sustainability and procurement managers of big businesses are responsible for sourcing environmentally friendly alternatives as they embark on their own net-zero target journey." Enviricard's paperboard cards Enviricard's paperboard cards are biodegradable and compostable to the European standard Enviricard's paperboard cards are biodegradable and compostable to the European standard that sets out the requirements for packaging and products to be biodegradable and compostable (EN13432). This offers a seamless transition for businesses. Furthermore, Graham Lycett also states, "Enviricards are designed to work with existing printer technology and printer ribbons, which means they are designed to work with existing dye sublimation Direct To Card (DTC) printer technology and printer ribbons." These cards thus present no barrier to change, making them one of the quickest wins for companies looking to reduce their carbon footprint and plastic consumption. Little green cards The potential impact is staggering. "We estimate Enviricard could replace 9 billion cards overnight when you look at the use cases," says Graham Lycett. He adds, "Enviricard is a perfect fit for many applications, not all, but 9 billion is our attainable market opportunity. Our little green cards could support the UK and other countries' ambitions to slow the rate of environmental destruction for which we are all culpable." ICMA Report 2020 The global market for plastic cards is vast, with 37 billion cards produced annually, according to the ICMA Report 2020. Enviricard's eco-friendly alternatives offer a credible solution to combat the environmental burden of plastic card production, which contributes approximately 1.8 billion tonnes of carbon emissions annually. Enviricard's commitment Enviricard's commitment to transparency and accountability is evident in its independent certification and carbon measurement from seed to end-of-life. By encouraging businesses to scrutinize their supply chains and combat greenwashing, Enviricard is pioneering the charge for greater environmental responsibility.
LG Electronics (LG) announced a series of organizational changes and executive appointments following the approval of its board of directors. This restructuring aims to accelerate the company’s mid- to long-term strategy, “Future Vision 2030,” by enhancing inter-organizational synergy and innovating its business portfolio. The restructuring focuses on regrouping LG’s business operation units to maximize the potential of existing businesses, strengthen platform-based service operations, accelerate B2B initiatives and secure new growth engines in promising sectors. Long-term competitiveness These changes are designed to enhance efficiency via the strategic selection and attention to abilities These changes are designed to enhance efficiency through the strategic selection and concentration of capabilities, thereby creating greater synergy between businesses and bolstering future competitiveness. To spearhead this transformation, LG has appointed skilled individuals with exceptional expertise, emphasizing the enhancement of the company’s long-term competitiveness through the development of high-performing organizations. Key Changes in Business Structure A new Company will be established to bolster the growth of the heating, ventilation and air conditioning (HVAC) business, a crucial component of LG’s B2B acceleration strategy. The Overseas Sales & Marketing Company will now function as the overseas B2B control tower. Additionally, display-based operations – including TVs, monitors and signage – will be integrated to foster synergies and expand platform-based service businesses. LG’s evolution New growth engines will be strategically migrated to firms with greater trade relevance New growth engines will be strategically relocated to companies with greater business relevance, ensuring more stable support and creating synergies across business areas. All four companies will now incorporate “solution” in their names, reflecting LG’s evolution into a Smart Life Solution provider that connects and enhances customer experiences across various environments, including homes, commercial spaces, mobility and virtual platforms. Restructuring of Companies LG has restructured its four Companies into the Home Appliance Solution (HS) Company, the Media Entertainment Solution (MS) Company, the Vehicle Solution (VS) Company and the Eco Solution (ES) Company. This reorganization redefines their roles and identities within LG. The H&A Company will be renamed HS Company to align with its vision of “Zero Labor Home, Makes Quality Time.” To support this vision, LG will move the Platform Business Center – responsible for the planning, development and operation of LG ThinQ – directly under HS Company. Home robot solutions HS Company contains Robot Business Division from the BS Company to meld robot technologies This strategic realignment aims to establish HS Company as a pioneer in AI solutions across diverse spaces, including homes, commercial areas and vehicles, effectively addressing customer needs outside traditional home settings. Furthermore, HS Company will incorporate the Robot Business Division from the BS Company to integrate core robot technologies into its home robot solutions. Lyu Jae-cheol will continue to lead HS Company. Application of webOS The HE Company will change its name to MS Company to align with its goal of becoming a media and entertainment platform powerhouse. It will integrate the Information Display business and Information Technology business from the BS Company with its TV business to create synergies in hardware and platform operations. Park Hyoung-sei will continue to lead the MS Company, driving its transformation into a media and entertainment platform. The MS Company will accelerate the expansion of platform-based service business areas by broadening the application of webOS, which was primarily used in smart TVs, to monitors, signage and in-vehicle infotainment systems. webOS will evolve into an integrated content and services platform for both indoor and outdoor use, enhancing competitiveness through synergy and improved business structure. LG’s B2B growth VS Company changing its name from Vehicle Component Solutions Company to Vehicle Solution Company The VS Company will clarify its role by changing its name from Vehicle Component Solutions Company to Vehicle Solution Company, emphasizing its commitment to providing innovative solutions across the entire automotive ecosystem. Eun Seok-hyun will continue to lead the company. The ES Company has been newly established. The HVAC business, previously part of the H&A Company and a significant contributor to LG’s B2B growth, will now operate as a standalone entity under the ES Company. Lee Jae-sung, the current head of the Air Solution Business Division, will lead the ES Company, ensuring continuity in the HVAC business and maintaining its strategic direction. LG’s key future growth Given the project-based nature of the HVAC business and the specific characteristics of the market and its customers, LG has determined that operating it as an independent Company will maximize future competitiveness and growth potential. With the establishment of the ES Company, LG aims to position itself as a global pioneer in comprehensive air solutions. Additionally, the ES Company will assume responsibility for the electric vehicle charging business from the BS Company and play a pivotal role in driving B2B growth within the clean tech sector, one of LG’s key future growth engines. LG’s future strategy The DX Center will focus on driving business performance through generative AI technologies Meanwhile, to enhance the competitiveness of overseas B2B operations, LG will establish the B2B Business Capability Enhancement Division under the Overseas Sales & Marketing Company. The Chief Strategy Office (CSO), acting as LG’s future strategy control tower, will also oversee AI acceleration and respond to global AI developments. The Chief Digital Office, previously responsible for digital transformation, will be reorganized into the DX Center and transferred directly under the CSO. The DX Center will focus on driving business performance through generative AI technologies and will be led by Cho Jung-bum. Overseas sales management The executive appointments emphasize the selection of diverse talents with proven expertise in sales, services, and R&D. Jung Pil-won, currently pioneering the TV Overseas Sales & Marketing Group, has been appointed as the MEA Region Representative, recognizing his extensive experience in overseas sales management and his deep understanding of the Middle Eastern and African markets. Additionally, Kim Jung-ho, Kim Yoo-seon, and Choi Jung-won, who head the subsidiaries in Saudi Arabia, Poland, and Malaysia, respectively, have been promoted to executive positions in acknowledgment of their significant contributions to business growth. All appointments are effective December 1, with promotions taking effect on January 1.
Warren Controls, a manufacturer of control valves and specialty fluid handling products, has announced updates to its ValveWorks® program aimed at improving the sizing and selection process for globe and rotary control valves by the ISA 75.01 international standard. The latest revision introduces a new interface that aligns with the ARI brand identity and includes several functional improvements. Users can now assign a quote number on the Project Edit page, utilizing an alpha-numeric text field that supports special characters. robustness and security Enhancements to the input filters have been implemented for improved robustness and security Enhancements to the input filters have been implemented for improved robustness and security, addressing previous limitations. A new checkbox on the fluid data page allows users to bypass trim limit filters when necessary. Additionally, a button has been added to the valve data page for removing blankets, which was not previously possible. A bug that occasionally prevented blanket information from being saved has also been fixed, ensuring consistent data retention. precise sizing of control valves These updates enhance the existing capabilities of ValveWorks®, which provides users with access to over 100,000 combinations of construction attributes. The program allows for precise sizing of control valves based on critical parameters, such as flow rate, inlet pressure and temperature, pressure drop, vapor and critical pressure, and predicted noise. Warren Controls continues to refine ValveWorks® to better serve its users in developing detailed quotes for valve selection.
Good Energy, the clean power company, will pay customers to automate the flexible use of their heat pumps or batteries through its new cutting-edge platform FlexiRewards. Customers could earn between £5 and £20 a month without needing to take any action – FlexiRewards does the work for them. Building on the success of Power Pause, Good Energy’s implementation of National Grid’s Demand Flexibility Service (DFS), FlexiRewards will take ‘demand side response’ a step further by automating customers’ flexibility. Unlike DFS, FlexiRewards does not require customers to respond to alerts to manually adjust their energy usage as adjustments are automated. Good Energy customers Launched as a pilot which will run for 12 months, the platform is available only to a select number of Good Energy customers who have had heat pumps or batteries installed by the company, but do not need to be supplied electricity by Good Energy. It not only offers direct financial rewards to participating households it also supports a more efficient and resilient national electricity grid, benefiting all electricity consumers across the UK. FlexiRewards platform FlexiRewards works seamlessly with Good Energy’s installed heat pumps and battery systems FlexiRewards works seamlessly with Good Energy’s installed heat pumps and battery systems to monitor and automatically adjust how each device uses or shares electricity during peak periods, requiring no active management by the customer. By doing so, it helps reduce strain on the electricity grid when demand is at its highest. As the FlexiRewards platform communicates with the customer’s devices, it can automatically shift power usage or battery charging to less-demanding periods, optimizing both the customer’s energy efficiency and the grid’s performance. Resilient energy system James Rees, Director of Product and Propositions, said, "Our goal has always been to allow people to take control of their energy in a way that’s both beneficial to them and sustainable for the planet." He adds, "With FlexiRewards, we’re offering a way for our customers to save and earn money with little to no effort, while supporting a cleaner, more resilient energy system." Good Energy heat pump James Rees continues: "We hope it will provide new insights into a smart energy future where everyone can play a role in grid efficiency – and get rewarded for it." Research the University of Southampton has conducted with Good Energy heat pump customers has indicated that heat pumps can be paused for up to two-hour periods with limited impact on home heat and customer comfort.
Del-Air Plumbing, Air Conditioning, and Electric, Florida’s foremost indoor comfort provider, continues its expansion across Florida with the acquisition of Colman Heating & Air. Del-Air serves Volusia and Flagler counties including Daytona, Titusville, Cape Canaveral, Cocoa, New Smyrna, Ormond Beach, and Palm Coast. Colman Heating & Air Since opening in 1980, Colman Heating & Air has been a provider of home comfort along Florida’s Space Coast. Located in Titusville, the company committed itself to excellent customer service, while providing customers with top-quality services in air conditioning repair, installation, ductless HVAC, heat pumps, light commercial HVAC, and much more. HVAC, plumbing, and electrical services “Through the acquisition of Colman Heating & Air, homeowners in Volusia and Flagler counties will have access to the services provided by our excellent team at Del-Air,” said Rick Rogers, CEO of Del-Air. Rick Rogers adds, “We remain dedicated to creating premier home comfort for homeowners and businesses in these two communities. Through our full suite of HVAC, plumbing, and electrical services, we commit ourselves to being an asset in the community.” air conditioning and heating contractor For over 40 years, Del-Air has created a reputation as the air conditioning and heating contractor of choice for Florida homeowners, homebuilders, and commercial businesses. As part of their dedication to the community, customers in their service areas can save $100 on their A/C tune-up when they donate five cans of food.
Expert Commentary
For warehouse and factory owners, cutting their heat energy bills by over 90% might seem like a pipedream. I’ve been in enough warehouses to know one thing: heating them is expensive and frustrating. It often feels like throwing money into the wind. However, times are changing, and with the introduction of Shortwave Infrared (SWI), a revolutionary technology set to redefine warehouse heating, business owners can finally achieve energy savings on the scale they need. Shortwave Infrared (SWI) For warehouse owners, slashing heat energy bills by more than 90% might sound far-fetched. Having spent time in countless warehouses, I know one thing: heating them is both costly and frustrating like throwing money into thin air. But times are changing. With the arrival of Shortwave Infrared (SWI), a ground-breaking technology poised to transform warehouse heating, business owners can now achieve the substantial energy savings they've been seeking. Beyond the Status Quo Faced with soaring bills, warehouse, and factory owners are actively seeking better alternatives For years, warehouse heating has been stuck in a cycle of inefficiency opting for bulky systems that consume vast amounts of energy but offer little in return. High heating bills were once seen as an unavoidable cost of doing business. However, the energy price hikes of 2021 and 2022 completely changed the game, straining heating budgets and forcing a rethink of what's acceptable. But there are positives to find in the situation. Faced with soaring bills, warehouse, and factory owners are actively seeking better alternatives. Next-gen technology An industry long overdue for disruption has finally found the push it needed to embrace 'next-gen' technology. Enter Shortwave Infrared, ready to take the spotlight. At the forefront of the heating revolution, it’s delivering unprecedented energy savings and cost efficiency, setting a new standard for businesses nationwide. Lost in Translation So, what sets SWI apart, and why does it outperform current systems? It all comes down to SWI's core heating principles. One of the most rewarding moments of my career was seeing the reaction of workers, shivering in a drafty space, suddenly feeling the warmth from SWI heaters. Their faces said it all – they couldn’t believe how something so simple could work so effectively. However, the main issue is that currently, the warehouse and logistics sector largely depends on convection heating, which works by warming the air within a space. While this might be adequate for smaller, enclosed areas, it falls short in large, open-plan spaces where heat quickly dissipates. Basic physics Turning up the thermostat won’t help either, as the principles are floored from the beginning It all comes down to basic physics, warm air rises. In buildings with high ceilings, this means heat drifts upwards, leaving workers on the ground cold, while the warmth stays out of reach. The issue is made worse by large doors and windows, which allow even more heat to escape. For those lucky enough to be near a heater, it can be hit-or-miss. Turning up the thermostat won’t help either, as the principles are floored from the beginning. You’ll just be draining budgets quicker than before. SWI: A New Frontier On the other hand, Shortwave Infrared Heating offers a revolutionary solution. By providing localized heat, it ensures workers stay comfortable and productive, regardless of the ambient temperature. Unlike traditional heating systems, SWI eliminates heat loss by targeting individuals directly – a feeling akin to the warm sun on your back. This strategic approach not only saves energy, but also creates a more comfortable workspace, making it an ideal solution for businesses seeking major efficiency and cost savings. Cost and carbon savings Unlike convection heating, SWI also delivers consistent warmth, eliminating cold spots. Additionally, its electric power source offers substantial cost and carbon savings, making it a sensible choice for those looking to align their heating systems with ESG initiatives. The Verdict is In By implementing SWIR, we helped them achieve a 90% reduction in energy consumption The good news is that the word is out, and companies are now reporting over 90% energy savings while drastically reducing their carbon footprints. A recent customer faced the challenge of heating a massive 5,000-square-meter space. By implementing SWIR, we helped them achieve a 90% reduction in energy consumption, exceeding expectations. Annual energy consumption The numbers speak for themselves. Annual energy consumption dropped from 150,000 kWh (gas) to 16,000 kWh (electricity), showcasing the incredible potential for change in UK businesses. This is just one example, imagine what we can achieve rolling out SWI across the country, The positive impact on the bottom line has prompted the company to implement SWI across all of its UK sites. As a sustainability-driven business, SWI provides a crucial solution to reduce reliance on carbon-heavy fossil fuels. The Future is Bright SWI's potential to transform warehouse and logistics is endless and businesses are now waking up to its potential, and are rightly being drawn in by the idea of significant cost and carbon savings. It’s a shift in mindset that’s challenging traditional heating methods. By focusing on precise, targeted warmth, rather than wasteful, resource-heavy convection heating, UK businesses are already saving millions of pounds each year. Efficiency of infrared technological challenges Business owners are accustomed to thinking of heating as raising the overall temperature of a space Yet one of the biggest challenges the industry faces is a mental one, not a mechanical one. Business owners are accustomed to thinking of heating as raising the overall temperature of a space. However, this outdated approach fails to consider the efficiency of infrared technology, which delivers focused warmth directly to workers, equipment, or specific areas. Impact of SWI I'm always thrilled to see the reactions of customers amazed by the impact of SWI. However, we need more people to embrace this innovative heating method, which means winning more hearts and minds. For those ready to make the switch, the benefits will be substantial, potentially saving thousands, if not millions, on heating bills at a time when they need it most.
Data centers worldwide are under intense pressure. High-powered computing is a global necessity that seemingly gets more demanding by the day. There’s also the need to prioritize sustainability improvements ranging from resource conservation to decarbonization. And data centers must consider their bottom line and remain competitive. Anticipating the challenges data centers will continue to face, scientists and engineers have innovated two-phase (2-PIC) immersion cooling. With the capacity to meet the elevated cooling requirements driven by high-powered computing, this next-generation solution delivers on environmental priorities by significantly lowering data center energy consumption, slashing, if not eliminating, water use, while supporting decarbonization, circularity missions, and more. Emergence of 2-PIC Traditional approaches are fast approaching capacity for meeting current and future cooling needs The emergence of 2-PIC comes at a critical time, because the traditional cooling methods that have kept data centers up and running so far—namely air cooling and water cooling—are doing so at the detriment of the planet. Additionally, these traditional approaches are quickly approaching capacity for meeting current and future cooling needs. Air- and water-cooling methods are used in approximately 95% of the estimated 8,000 data centers that exist today. The criticality of high-powered computing Once seen as a future need, high-powered computing, and faster-than-ever processing are now established as critical to the operation of businesses, governments, organizations, and other entities that support the way communities function, survive, and thrive. Whether it’s health and wellness, financial institutions, economic growth, safety and protection, entertainment, education, or any other service supporting our way of life, successfully providing that service fully depends on the ability of data centers to quickly and reliably obtain, store, and process data. Influence of AI AI has a profound influence and, generates far more power than traditional internet uses Moreover, when we say “data centers,” we’re not just speaking of big players like Microsoft, Google, Meta, and Amazon. Equally dependent on high-performance, high-speed computing are enterprise data center operators, such as our governments and military, financial institutions, healthcare systems, educational institutions, and more. We also must acknowledge the profound influence of artificial intelligence (AI), which generates far more power than traditional internet uses. Its effects are far-reaching, enhancing patient care, supporting risk management and fraud detection in finance, boosting crop yields within agriculture, and more. The environmental costs of data centers According to the latest estimates by the International Energy Agency, data centers worldwide produce 1% of energy-related carbon emissions and in 2022 used approximately 460 TWh of electricity per year—equating to 2% of global electricity demand. McKinsey and Company estimates 40% of this electricity is used for data center cooling. Data centers’ impact on the environment also includes their significant water consumption, averaging 300,000 gallons per day, and a physical footprint that averages 100,000 square feet but in the case of some hyperscale data centers can range between 1.3 to 2 million square feet. In terms of growth, a U.S. market report from Newmark tells us that in the U.S. alone, the U.S. data center footprint will absorb 35 gigawatts by 2030, which is more than twice the data center power consumption of 2022. The emergence of liquid cooling: the elevated interest in 2-PIC From reducing energy and water consumption to shrinking physical footprints, 2-PIC offers the planet a better data center solution. In less than two years, traditional cooling systems won’t be able to support the exponential growth in the world’s data processing and storage applications. Based on publicly available product roadmaps from major chip manufacturers, by 2026, air-cooled systems will no longer be able to meet the cooling needs of most next-generation, high-performance computing chips. Capable of removing heat more effectively than air cooling, liquid cooling uses a liquid such as water or a dielectric fluid to cool the heat-generating components of servers. The liquid can cool these components directly, or it can be done indirectly through a heat exchanger. With two-phase immersion cooling the entire server rack is submerged in a tank filled with a dielectric fluid. Single-phase and two-phase liquid cooling Single-phase liquid cooling uses a pump to circulate the liquid through a closed-loop system Single-phase liquid cooling uses a pump to circulate the liquid through a closed-loop system. Two-phase liquid cooling uses a phase-change material, such as a refrigerant, which evaporates and condenses as it absorbs and releases heat. With 2-PIC, which is a form of two-phase liquid cooling, the entire server rack is submerged in a tank filled with dielectric fluid. The fluid boils as it’s heated by the components of the servers, creating bubbles that rise to the surface and condense in a heat exchanger. Gravity then returns the condensed fluid to the tank, creating a natural circulation loop that does not require pumps or fans. Advantages of 2-PIC 2-PIC is commanding attention as the solution for meeting the cooling demands of the high-powered computing components of today and tomorrow. Moreover, the technology of 2-PIC systems, combined with the right dielectric fluid, delivers advantages to “take the heat off” data centers. Here’s a breakdown of additional 2-PIC benefits: Up to 90% reduction in energy consumption: Based on modeling completed by the industry, 2-PIC is expected to reduce up to 90% of data center cooling energy consumption and 40% of overall data center energy consumption*. (*Compared to traditional air-cooling technologies) Enhanced computing performance and data center reliability: 2-PIC allows servers to operate at higher temperatures and power densities, while reducing the risk of overheating. Significant reduction in water consumption: Depending on the data center location and cooling design methodology, water consumption could even be eliminated completely. 60% reduction in the physical footprint: 2-PIC reduces the space required for cooling equipment, freeing up more floor area for servers and increasing the rack density of the data center. Lower GWP and circularity: Chemours Opteon™ 2P50 is a developmental dielectric heat-transfer fluid, currently pre-commercial, pending regulatory approval. It offers an extremely low global warming potential (GWP) of 10 and was specifically created to optimize the performance of the electronic components in a 2-PIC system. This 2-PIC fluid also enables the reprocessing/reuse of existing fluid to maximize circularity. The bottom line: In addition to other compelling data, a recent study commissioned by Chemours and LiquidStack through Syska Hennessy, revealed that, compared with other state-of-the-art liquid cooling methods, 2-PIC can deliver up to a 40% lower total cost of ownership (TCO) and significantly reduce operational expenditures (OPEX), with savings ranging from 54% to 88.6%. Benefits of new data center cooling technologies compared to single-phase direct-to-chip, and single-phase immersion methods. 2-PIC, the future-ready solution As the world’s reliance on AI and other high-powered computing capabilities escalates, data center cooling solutions must grow with demand while significantly reducing their impact on the environment. In global energy savings alone, 2-PIC could generate an estimated savings of 340 TWh by 2055—the equivalent of powering more than 517 million laptops 24/7. And even with increasing IT loads, 2-PIC maintains its performance, ensuring long-term cost-effectiveness and adaptability to meet future demands. With society at a crossroads between the criticality of high-powered computing and a planet in crisis, the industry is turning its attention to 2-PIC as the solution for today and tomorrow.
Until a couple of years ago, most of the talk about heat pumps occurred around this time of year, when more than half the planet prepares for an autumn cooldown. These discussions were typically limited to regions that only experienced moderate winters. But as anyone who has recently perused an HVACR trade magazine or website—or participated in an industry webinar, event, or social media conversation—can tell you, the topic of heat pumps is virtually unavoidable. Not only do heat pump discussions now occur year-round, but they’ve also ascended to consistent headline status and transcended the traditional boundaries of moderate climates. The decarbonization megatrend One might say heat pumps have taken their place on the global stage. If you’re asking why this has happened, the answer requires just three words: the decarbonization megatrend. However, for industry professionals looking to grow their businesses, it’s helpful to gain a deeper understanding of heat pumps—how they work, ways they are currently meeting HVACR needs, and where the technology is headed for next-generation applications. Through this understanding, members of the industry can better forecast customer needs as well as identify opportunities for expanding in both current markets and, potentially, new ones. How heat pumps work—don’t let the name fool you The heat released as the refrigerant condenses is then transferred to interior spaces What heat pumps do and, more specifically, how they do it provides the key as to why they are now being considered a “hero” of decarbonization. The term can be misleading, because “heat pumps” do not generate heat. Because of this, heat pumps are being more widely embraced as the lower-carbon-emission alternative to combustion-based heating technology that uses, for example, fossil fuels. Instead of creating heat, heat pumps extract heat energy from where it’s not needed and move it to where it is needed. When a heat pump is in heating mode, its refrigerant evaporates as it absorbs heat from the outside. The heat released as the refrigerant condenses is then transferred to interior spaces. In warmer weather, a heat pump kicks into cooling mode and the process is reversed, as heat is extracted inside and released outside. This non-combustion process of moving heat from one place to another provides several potential benefits to society: Heat pumps support the megatrend toward decarbonization. They replace fossil-fuel heating with high-efficiency technology. They can be paired with lower-global-warming-potential (GWP) A2L refrigerants—such as R-454B and R-32—to further increase environmental benefits, while offering similar performance to the legacy R-410A. They offer the ability to tap into alternative energy sources, such as industrial waste heat as well as heat sourced from the air (ambient), ground (geothermal), or lakes/ponds (water). Meeting today’s needs—these aren’t your grandfather’s heat pumps Heat pump technology has been commercially available and in use since the 1950s. Early versions of heat pumps were essentially reversible air conditioning units, and most used traditional refrigerants—like R-22 and, more recently, R-410A. These units performed well and operated safely using lower-toxicity, nonflammable (A1) refrigerants. However, they were known to sometimes struggle at lower ambient temperatures. As often happens in the world of science and technology, challenges drive the search for solutions. Today, we’re seeing innovations that result in efficient, effective cold-climate heat pumps that optimize various components, such as compressors, heat exchangers, expansion valves, and their controls. Thanks to these innovations and others, the U.S. and other countries are experiencing broader heat pump adoption and, in turn, supporting progress toward decarbonization. Heat pump technology has been commercially available. Increasing heat pump accessibility and viability in more places and spaces is also critical to the HVACR industry’s commitments to the environment—and its need to heed regulations advancing the transition to systems reducing climate impact. Emerging systems use mildly flammable (A2L) refrigerants. They are similar in design to legacy systems and include modifications to mitigate risks associated with the change to A2Ls. Where things are headed—heat pump technology is just getting started Even with the significant advances we’ve seen in colder-climate heat pumps, there is still untapped potential in terms of what the technology can achieve. We can expect to see continued innovation as end-user needs and environmental priorities continue to evolve. Some foreseeable growth areas for heat pumps include: Traditional applications—that is, moderate climates Expansion into nontraditional climates—heating in very cold climates and cooling in hotter regions Domestic water heating, replacing fossil-fuel systems Leveraging a variety of heat sources—geothermal, air-sourced, and water-sourced Harnessing waste heat generated by energy-intensive industrial processes Use of lower-GWP A2L refrigerants System optimization will also drive greater use of lower-GWP A2L refrigerants, such as R-454B Supporting these growth areas will be innovations that optimize high-performance, high-efficiency delivery of extracted heat, using a combination of traditional and new split-ducted, ductless/mini-split, and mono-block technologies. System optimization will also drive greater use of lower-GWP A2L refrigerants, such as R-454B, while limiting the use of highly flammable refrigerants such as R-290. Refrigerant selection will also play an increasingly important role and may offer additional opportunities for application-specific technology. As heat pump applications expand, we can expect to see greater focus on selecting the optimum refrigerant to use as the working fluid. Criteria will weigh system design, operating conditions, and other priorities against key refrigerant properties: Physical—boiling point, vapor pressure, density, and material compatibility Thermodynamic—cooling/heat capacity, energy efficiency, pressure-enthalpy (PH) curves Environmental—ozone depletion potential (ODP) and global warming potential (GWP) Safety and health—flammability and toxicity Conclusion: There’s strong and ample reason to “stay pumped” Over the past several years, members of the HVACR industry have enthusiastically embraced new heat pump solutions. Evolving heat pump technology and expanding applications will continue as the industry progresses along the path of more energy-efficient, lower-GWP, and more sustainable new-generation and next-generation heating and cooling. This, coupled engineering and science that leverages untapped heat pump potential, will mean more opportunities for HVACR contractors to deliver new options to the markets they serve. With a strong understanding of their customers’ individual heating and cooling needs, climate challenges, and sustainability goals, contractors can confidently select the best heat-pump refrigerant solution.
Editor's Note
Gaining early popularity in the 1970s, previous generations of heat pumps were only considered useful in mild climates. But today, modern heat pumps, especially variable-speed mini-split heat pumps, are reliable, sustainable, and used in various ways, including ways our parents and grandparents would never have thought of. New uses include she sheds, man caves, garages, tiny homes, sunrooms, and even boats. We spoke to Sean Gallagher, Regional Sales Manager, Eastern Massachusetts, Mitsubishi Electric Trane HVAC US (METUS), to discuss how people use heat pumps in the U.S. and abroad. He described some of the technology's varied (and sometimes surprising!) uses. Q: What are the most common applications of heat pumps on boats and marine crafts, and how do they differ from residential or commercial uses? Gallagher: I know one Diamond Contractor® who installed a heat pump on his father’s yacht. Since my territory includes Southeast Massachusetts and Rhode Island, I frequently see heat pumps on the large car-carrying and passenger-carrying ferries. Although commercial applications like ferries are more common, I think we will see more heat pumps on people’s boats and yachts, especially since we use an anti-corrosion coating that protects the outdoor heat exchanger against salt, sulfur and other airborne contaminants that impact the efficiency and performance of outdoor units. Q: What are some other "off-beat" or previously underappreciated applications for heat pumps – she sheds, man caves, garages, tiny homes, sunrooms, or something similar? Heat pumps are being used in high-end campers like Airstreams, smaller campers, parking lot kiosks Gallagher: All those applications apply, and there’s plenty more. My niece lives in a 400-square-foot studio apartment over my garage that’s heated and cooled with a heat pump. I also installed a low, wall-mounted heat pump unit in my father’s tool and woodworking shed. Since his tools hang on the wall, he didn’t want to give up any wall space, so now, he has a climate-controlled workshop that suits his needs. Heat pumps are also being used in high-end campers like Airstreams, smaller campers, parking lot kiosks, food trucks, and even intermodal shipping containers turned into spaces like laboratories. Q: What are the key advantages of using variable-speed mini-split heat pumps in smaller applications in various climates? Gallagher: All-climate heat pumps can conquer any climate in New England and most of the United States. Overall, variable-speed mini-split heat pumps provide efficiency, ease of installation, comfort, and quiet, regardless of outdoor temperature. Some of the best heat pumps on the market provide warmth, even if the temperature drops to a chilly –22 degrees F. At the opposite end of the thermometer, heat pump systems can cool indoor spaces when it’s a scorching 115 degrees F. Q: How does the equipment used for these applications differ from the equipment in more common HVAC use cases? Gallagher: In most HVAC use cases, people use a unitary, conventional HVAC device to heat a home. However, the market has been moving away from unitary devices toward having custom control in every room. Think about if you turned on your kitchen faucet and every faucet in the house turned on, or if you turned on your bedroom light and every light in your home turned on with it. It’s inefficient, which is how unitary systems work. All-climate heat pumps give precise temperature control and custom comfort in any area, whether it’s a shed, man cave, or garage. Each person can heat or cool the space to their comfort level. This is how heat pumps work in general and in these off-beat use cases. Q: How has the reliability of modern heat pump technology expanded the potential for marine and other applications? One-to-one heat pumps are perfect for smaller applications because of their turn-down ratio Gallagher: Since Mitsubishi Electric’s Hyper-Heating INVERTER® (H2i®) technology is not new – having come out around 2009 – the technology has grown by leaps and bounds. Today’s one-to-one heat pumps are perfect for smaller applications because of their turn-down ratio. They can ramp up quickly and then throttle back to meet the needs of a space, through a setpoint, in heating and cooling to use only the energy necessary to maintain the comfort of that indoor space. Multi-zone applications can handle larger spaces with ease and efficiency. Q: Can you provide examples of how heat pumps are being used on boats or marine crafts in the U.S. and abroad? What technologies are they replacing? Gallagher: Heat pumps are replacing electric-resistance heat, gas-fired HVAC units, and hydronic systems for watercraft powered by steam. For cooling, heat pumps are replacing chilled water systems on larger ships. Heat pumps are frequently used on large car-carrying and passenger-carrying ferries. I also know of people who have installed them on yachts and other boats, which I think will become more prevalent. Q: What are the challenges HVAC professionals might face when installing and maintaining heat pumps on boats and/or in smaller applications? The biggest challenge they face is contending with the caustic nature of the saltwater environment Gallagher: For maritime applications, the biggest challenge they face is contending with the caustic nature of the saltwater environment. I mentioned this a minute ago, but salt can degrade non-ferrous metals, like copper and aluminum. It’s crucial to use an anti-corrosion coating that protects the outdoor heat exchanger against salt, sulfur, and other airborne contaminants that impact the efficiency and performance of outdoor units. Some companies specialize in taking heat pumps apart and coating all the parts that could corrode to prevent them from doing so. This makes the heat pumps last much longer than they otherwise would. Q: How does the installation of heat pumps on boats align with the growing demand for energy-efficient and sustainable solutions in the marine industry? Gallagher: Energy-efficient heat pumps consume far less energy than a conventional HVAC system. Heat pump systems cycle hot and cold air where it’s wanted depending on the season and provide personalized comfort on a boat year-round. Modern heat pumps, especially variable-speed mini-split heat pumps, are reliable and sustainable, providing high-performance heating and air conditioning on boats anywhere, even in extremely cold or warm climates. Heat pumps are preferable in most climates, as the efficacy of a heat pump is generally 1.5 to 4 times greater when compared with electric resistance heating. {##Poll1731297929 - Which of these applications for heat pumps seems most surprising?##}
Johnson Controls’ Advanced Development Engineering Center (JADEC) in New Freedom, PA., about 25 miles from Philadelphia, highlights and demonstrates the company’s capabilities related to development, testing and manufacturing. The 357,000-square-foot facility is an advanced engineering and testing facility for water-cooled chillers, air-cooled chillers, air handlers, compressors, and heat pumps. Much of the development in the facility centers on advancements in a critical vertical market for the HVAC industry – data centers. Big challenge Data centers are a big challenge – and a huge opportunity – for the HVAC industry. “You cannot ignore the tremendous growth opportunity in this vertical,” says Todd Grabowski, president, Global Data Center Solutions for Johnson Controls. Unlike other verticals that are more dominant in certain geographic regions, data centers are growing everywhere globally – and at a breathtaking pace. “As a growth company, it is critical that we have solutions to handle the growth and serve the customers in the data center market,” says Grabowski. Performance of various components Testing options at JADEC include testing the performance of various components Testing options at JADEC include the ability to test the performance of various components in a controlled environment that approximates how they will operate in the customer’s real-world setting. There are more than 20 testing labs available at the JADEC campus, covering some 250,000 square feet. “We want everyone to understand the unique position Johnson Controls is in to use our technology and our manufacturing scale to accomplish desired outcomes,” said Grabowski. Non-compressor solution JADEC displays the full breadth of what they offer, including a non-compressor solution using direct evaporative cooling and an air-cooled unit that uses a screw compressor or a magnetic-bearing centrifugal compressor. Also included are various water-cooled chillers. Johnson Controls owns, develops, tests, and manufactures all the compressors on display. Customers are assured of getting a fully engineered and supported solution from Johnson Controls (e.g., no third-party compressors). Johnson Controls owns, develops, tests, and manufactures all the compressors on display. Colocated data centers Grabowski emphasizes that each customer installation has site-specific needs that require unique solutions that Johnson Controls seeks to fulfill. The company works closely with data centers, including those operated by “hyperscalers” such as Amazon, Microsoft, Apple, and Meta, and colocated data centers that rent space and capacity to customers based on their growth and needs. Colocated data centers come in a variety of sizes and types; some of them are operated by companies such as Equinix and NTT. Data center solutions Sustainable methods include the use of refrigerants with ultra-low GWP The sustainability of data center solutions is a bigger issue than ever, given the sheer volume of data centers being built to handle the world’s growing computational needs. Sustainable approaches include the use of refrigerants with ultra-low GWP, and water-free systems that do not require higher costs or create higher demands on a locality’s water infrastructure. Magnetic bearing centrifugal compressors are more energy-efficient because no friction is lost in the compression; also, the equipment is quieter. Impact on global electricity demand “Sustainability has always been an important aspect, and now it is critical in 2024 and beyond,” says Grabowski. Because data centers are huge consumers of energy, they can put more strain on the electricity grid and have a big impact on global electricity demand. Lowering energy usage helps to address the challenge. “We want to contribute to energy efficiency, be good stewards of water, and reduce noise,” says Grabowski. Increasing the challenges are the proliferation of new artificial intelligence (AI) chips, more common in newer data centers, which need more power and create more heat than older chips. Advantages of water cooling The liquid contained in a cold plate on top of the chip is denser than air and accept more transferred heat Closed-loop liquid systems are used to cool individual chips, an application that does not cause a strain on local water supplies. The liquid contained in a cold plate on top of the chip is denser than air and can accept more transferred heat. However, chillers and cooling towers lose water through evaporation and can strain local water supplies. Johnson Controls is researching and testing systems that provide the advantage of water cooling without losing excess water to evaporation. Air-cooled systems In contrast, air-cooled systems can cool chips to a point, but may not provide enough cooling for high-density chips. Johnson Controls provides air-cooled machines up to 600 tons and water-cooled systems up to 4,000-plus tons. “As chip technology evolves, the way you cool, secure and automate the entire data center changes as well,” says Grabowski. “Companies such as Johnson Controls must keep up with evolving trends and provide unique solutions.” As chips become denser from a heat-generation perspective, systems must be optimized from a footprint and energy standpoint. JCI provides air-cooled machines up to 600 tons and water-cooled systems up to 4,000-plus tons. Technological solutions “As chip density increases, we will have technological solutions ready for the next generation of chips when they come out,” adds Grabowski. Johnson Controls is also involved in developing new approaches to managing the heat from data centers, such as the possibility of recapturing the heat and circulating it into a district-heating system for a nearby community, university, or hospital. A more widely deployed approach in Europe, the concept of district heating is gaining acceptance in the U.S. market. {##Poll1725623180 - What is the biggest challenge the data center market presents to the HVAC community?##}
TE Connectivity’s main product categories for the HVAC market are power interconnects, signal interconnects, magnet wire for motors, and heat-shrink tubing to seal against environmental factors. component materials The company works with HVAC original equipment manufacturers (OEMs) to solve challenges such as harsh environments, safety, and power and signal usage. Although components are a “small” element when an OEM assembles an HVAC system, their impact can be big. For example, a tiny component not producing a spark could make it safer to introduce mildly flammable refrigerants into the newer HVAC systems. Addressing material compatibility Raising questions about component materials not degrading by exposure to newer chemicals over time Also related to the transition to newer refrigerants is the issue of materials compatibility, raising questions about component materials not degrading by exposure to newer chemicals over time. “The big trends in HVAC are higher efficiency, more intelligence (in the context of the Internet of Things), faster data transmission, better safety, and more reliability,” says Joseph Burch, Business Development Manager for TE Connectivity’s Appliance Business Unit. product portfolio TE Connectivity is a brand associated with high quality. OEM customers think of the company (rather than lower-cost competitors) when they have a critical design and/or they need to access TE Connectivity’s vast product portfolio spanning a variety of markets. Broadly speaking, their products include wire-to-board connectors and wire-to-wire connectors at a range of amperages, voltages, and sealing requirements. The broad product line means there are likely solutions within the TE Connectivity family for many OEM design needs. durability and sustainability “We try to meet customers where they are and where the supply chain is,” says Burch. In addition to dealing directly with OEMs, the company works around the world alongside contract manufacturers of various subsystem components. Currently, TE Connectivity is a global leader with a strong focus on reliability, durability, and sustainability in its connectivity and sensor products. They serve a range of industries, including HVAC, and are known for their contributions to technological advancements. the efficiency of heat pumps Higher efficiency requires precise monitoring of electrical signals and transmission of data For TE Connectivity and others, driving development in the HVAC market is the transition to heat pumps, a rapidly growing equipment category. Achieving the improved efficiency of heat pumps raises the stakes from a component perspective boosting the need for sensors and faster data transmission. Higher efficiency requires precise monitoring of electrical signals and transmission of data. Integration of heat pumps with renewable energy sources, such as solar, requires even more connections and better communications. rapid data transmission The ability of newer systems to adapt to changing environmental conditions depends on the fast transmission of sensor data to guide operation. In effect, rapid data transmission, using signal interconnects, makes it possible to achieve higher efficiencies that are critical to newer systems. The faster signals are communicated, the more efficient the systems are. Larger systems are increasing the demand for higher power, and efficiency standards are driving more sensing needs, as is the trend toward smart homes. flame retardant Addressing one of the big challenges in the HVAC market, TE Connectivity sells its products to withstand harsh environments such as moisture and vibration. In a typical HVAC scenario, half the system is located outdoors and exposed to weather and other elements. From a safety perspective, electrical connectors on HVAC units are unattended 24/7, so reliability is critical, and materials must be flame retardant and withstand high temperatures. Parts must adhere to the Underwriter’s Laboratories (UL) VO flammability rating, which means a flame extinguishes within 10 seconds and there is no dripping. competitive analysis TE Connectivity’s business development teams seek broadly to assess the size of a market, such as HVAC, and the magnitude of the opportunity in each market for their various product lines. In addition, the company attends trade shows to see the latest trends to seize the opportunities to promote the company’s brands and products to the market. TE Connectivity engineers conduct “in-house teardowns” of existing OEM products to analyze how various components are used and how they might be improved to refine the overall solution. TE Connectivity’s competitive analysis labs are frequently looking for new opportunities to innovate. address design-related issues A “system architecture team” within the engineering group is tasked with understanding how systems work TE Connectivity’s engineers also work directly with OEM customer engineers to address any design-related issues. The field engineering team works on the “front line” with customers and provides feedback to the company’s development engineering team, which gets involved as needed. A “system architecture team” within the engineering group is tasked with understanding how systems work, new technologies, new regulations, and innovations, and establishing roadmaps to forecast needs looking ahead five to ten years. Multiple design trends “Our engineering teams are problem-solvers, focused on connectivity problems across many industries,” says Joshua Poterjoy, Senior Manager, Product Development Engineering. Multiple design trends are among the factors driving product needs, such as miniaturization, higher-speed data transmission, the need for ergonomic and modular designs (for ease of assembly), and components designed for assembly and packaging automation. Components also adhere to Restriction of Hazardous Substances (RoHS) directives that avoid the use of hazardous substances in electrical and electronic equipment. ease of installation GRACE INERTIA series signal connectors provide fine-pitch connections for smaller electronics Creating components to deploy ergonomic and modular designs promotes ease of installation, both for assembly by the OEM company and for installers in the field. Components are designed to be as simple as possible while achieving all the operation and reliability standards. Quick-connect and twist-and-lock systems provide an assuring “click” when a robust connection is made. For example, the company’s Universal MATE-N-LOK multi-position power connectors are often used in the HVAC market from powering control cards to motors to fans. Also, the GRACE INERTIA series signal connectors provide fine-pitch connections for smaller electronics. TE Connectivity’s history TE Connectivity’s history can be traced back to the founding of AMP Incorporated in 1941, which pioneered the development of electrical connectors. In the 1990s, AMP became part of the Tyco International conglomerate, further expanding and diversifying. In 2007, Tyco International split into three independent companies, including Tyco Electronics, which focuses on connectivity and sensor solutions. Tyco Electronics changed its name to TE Connectivity in 2011.
Case studies
Wren is a climate subscription service that helps individuals offset their carbon footprint through monthly contributions. Users can calculate their carbon emissions using Wren’s intuitive calculator and fund various climate projects, including refrigerant destruction. Wren emphasizes transparency by providing regular updates on the impact of contributions, including data, photos, and stories. The platform aims to make climate action simple and effective, ensuring that every dollar contributes to meaningful environmental change. About A-Gas A‑Gas is a world pioneer in the supply and lifecycle management of refrigerants and associated products and services. Through the first-class recovery, reclamation, and repurposing processes, we capture refrigerants and fire protection gases for future re-use or safe destruction, preventing harmful release into the atmosphere. For over 30 years, A-Gas has supported clients and partners on their environmental journey by supplying lower global warming gases and actively increasing the circularity of the industries we serve, building a sustainable future. Challenge HCFC-22 is a potent greenhouse gas with a global warming potential (GWP) much higher than CO2 The widespread use of refrigerants like HCFC-22 (R22) presents a significant environmental challenge. HCFC-22 is a potent greenhouse gas with a global warming potential (GWP) much higher than CO2 (one molecule of R22 has a global warming impact 1,810 times that of one molecule of CO2). If not properly managed, its release would have a negative impact on the atmosphere. As these refrigerants reach the end of their lifecycle, there is an urgent need for effective solutions to prevent their emissions and minimize their environmental impact. Solution To address this challenge, A-Gas recovers refrigerants for reclamation or destruction at A-Gas facilities across the country. By leveraging Wren's platform to mobilize individual contributions and A-Gas' technical expertise in lifecycle refrigerant management, this partnership enabled an environmentally conscious solution for the used refrigerant. It underscores the potential for innovative partnerships that can help to further reduce emissions in the refrigerant industry through its on-site refrigerant recovery service (Rapid Recovery®), refrigerant buyback programs, and wholesale supplier reclaim program (Refri-Claim™). HCFC-22 destruction project The ACR methodology has included HCFC-22 as eligible for destruction-generated offsets since 2017 Wren and A-Gas formed a partnership to provide Wren subscribers with the opportunity to fund an HCFC-22 destruction project through the generation of A-Gas carbon credits to ensure the gas does not escape into the atmosphere. While the ACR (formerly American Carbon Registry) methodology has included HCFC-22 as eligible for destruction-generated offsets since 2017, few have completed such projects because the price of HCFC-22 is so high; it is more profitable for organizations to reclaim this product. ACR’s methodology As such, this is one of the first HCFC-22 destruction projects utilizing ACR’s methodology. Approved by the International Civil Aviation Organization (ICAO) to provide carbon credits in its Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA), ACR is highly regarded across the world. Results The partnership yielded multiple environmental benefits: Emissions Avoided: The initiative successfully avoided the release of 16,000 tons of CO2-equivalent emissions by destroying HCFC-22. This substantial elimination of greenhouse gas emissions demonstrates the effectiveness of the program. Subscriber Engagement: Wren provided its subscribers with detailed updates on the impact of their contributions. These updates included data on the quantities of HCFC-22 destroyed and the corresponding emissions reductions. This transparency helped build trust and encouraged ongoing participation in climate action. Educational Impact: The collaboration raised awareness about the importance of proper lifecycle refrigerant management. Wren and A-Gas educated the public on lesser-known aspects of climate change mitigation by highlighting the environmental benefits of destroying high-GWP substances. Conclusion This partnership enabled an environmentally conscious solution for the used refrigerant By leveraging Wren's platform to mobilize individual contributions and A-Gas' technical expertise in lifecycle refrigerant management, this partnership enabled an environmentally conscious solution for the used refrigerant. It underscores the potential for innovative partnerships that can help to further reduce emissions in the refrigerant industry. refrigerant destruction protocols and technology "We are excited to work with A-Gas to push forward the standard of refrigerant destruction protocols and technology," said Landon Brand, CEO, of Wren. Landon Brand adds, "This is one of the most reliable and impactful project types we have found in our years of funding climate solutions, and we hope our community can keep blazing a trail to eliminate these dangerous refrigerants."
The Olsen Group, based in Boca Raton, Florida, is a national pioneer in HVAC energy optimization. Donald Olsen and his seasoned team of HVAC control specialists have been in business for two decades, integrating energy-saving solutions into over a thousand commercial and large-scale residential projects. In the process, the Olsen Group has become one of North America’s top suppliers of Verdant thermostats. Verdant devices leverage intelligent occupancy sensors and proprietary software to reduce HVAC runtimes by 45 percent on average. HVAC control integration Verdant’s effectiveness, reliability, and broad compatibility have made Verdant the energy management solution of choice for thousands of hotels and MDUs, including multifamily buildings, senior living, and student housing. The Olsen Group has forged a productive two-way partnership with Verdant. Donald Olsen and his team have made it a priority to share data, customer feedback, and requirements with Verdant – and Verdant, in turn, has come to rely on Olsen when they need to field test a new solution. In May of 2024, Verdant reached out to Olsen for help with a new pilot program aiming to facilitate more effective HVAC control integration, easier service, and deep energy savings for MDU projects around the globe. The Challenge Commercial VRF systems have an extremely attractive set of upsides for hotel operators Inverter (VRF) system design is becoming increasingly common in hospitality settings. Commercial VRF systems have an extremely attractive set of upsides for hotel operators. They are significantly more energy efficient and quieter than traditional VTACs or PTACs; they can provide simultaneous heating and cooling to different zones for optimal guest comfort; and they allow both individual room-level setpoint control and building-level centralized management. However, the majority of VRF units cannot connect directly to a third-party smart thermostat. Because they rely on proprietary manufacturer protocols for variable speed commands and internal diagnostics, VRF units require an external control solution to facilitate bidirectional communication with Verdant thermostats. Installation and commissioning process Every additional component in a system adds complexity and opportunity for human error. In hotels, that complexity is multiplied across hundreds of rooms. “HVAC systems are installed dark for new builds, with no power running to the site,” says Donald Olsen, President and Owner of the Olsen Group. “There’s no way to test as we go. If there are any mistakes during installation, we find out about it when the lights go on after project completion.” And mistakes are nearly inevitable. Some third-party controllers have prominent dipswitches that can be easily snagged or tripped during transportation or installation, altering their configuration and causing them to fail once the system is powered. These switches are often accidentally tripped multiple times throughout the installation and commissioning process, pioneering to a never-ending cycle of errors and service calls. VRF control solutions Adding to the issue, not all third-party control keys have the ability to retrieve and solve system error codes “Once properly configured and installed, VRF control solutions tend to be incredibly reliable,” says Olsen. “Getting them there is a real challenge, however. Accidents, human error, and repeated recalibrations can drive serious project overruns and client dissatisfaction.” Adding to the problem, not all third-party control solutions have the capability to retrieve and translate system error codes. “If the central management system isn’t getting certified manufacturer control signals from the control device, it may no longer recognize the thermostat. The system will continue to function, but it will always show up in the central manager with an error message,” warns Olsen. Airzone Aidoo Pro control solution These false error reports degrade the overall utility of the central management system, robbing operators of the ability to detect and mitigate problems proactively and requiring onsite testing to diagnose any issues. As VRF systems become the norm for hospitality projects, Verdant needed a solution to reduce the possibility of accidental misconfiguration and improve visibility into system functionality. They called on Olsen to conduct a pilot program, retrofitting sixteen VRF units in the Jacksonville Beach, FL Springhill Suites with the Airzone Aidoo Pro control solution. The Solution For the pilot, the Olsen Group outfitted each VRV unit in the loop with an Aidoo Pro controller The Jacksonville Beach Springhill Suites is a 156-room hotel with a state-of-the-art Daikin VRV rooftop chiller system. The Airzone Aidoo Pro ships preconfigured for the specific HVAC unit model, reducing the possibility for errors during initial installation. For the pilot, the Olsen Group outfitted each VRV unit in the loop with an Aidoo Pro controller. This 1:1 system design simplifies operations and troubleshooting: Any issue can be immediately traced back to a single unit, minimizing the scope and duration or repair downtime. “The Airzone Aidoo Pro offered two key upgrades as a VRV control solution,” says Olsen. “First, the dipswitches are recessed, making them much harder to trip accidentally. Second, Aidoo makes the system much easier to service. We can read error codes, run tests, and diagnose issues remotely, without ever needing to disrupt a guest’s stay.” Airzone’s expansive library This advanced remote management is enabled by Airzone’s expansive library of manufacturer protocols. “Because of our close relationship with HVAC manufacturers, Aidoo Pro can provide the proprietary control signals the central management system is expecting to see,” says Borja Fernandez, Director of OEM Solutions, Airzone. “That preserves all the features of the HVAC unit and thermostat, while also eliminating persistent false error codes. With Aidoo Pro, the central management system can function as a single-pane-of-glass HVAC monitoring and control solution for the building, as intended.” Results and Next Steps The pilot program is expanding to new builds around the globe, including projects in the UK Olsen reports that Springhill Suites is happy with their upgraded VRV system. “They have more visibility into the system and fewer services calls,” says Olsen. “When there is an issue, we can diagnose it remotely for faster resolution and less guest room downtime. It’s a much better customer experience overall.” Verdant is encouraged as well. This pilot program is expanding to several new builds around the globe, including projects in Central America, the Caribbean, the UK, and the EU. HVAC energy savings “There is a massive untapped market for energy-efficient HVAC upgrades in the Caribbean region,” says Olsen. “Energy costs there can exceed a dollar per kilowatt hour. Cost-effective devices like Verdant thermostats and the Airzone Aidoo Pro pay for themselves very easily in that scenario.” Verdant and the Olsen Group have built global brands by helping commercial properties realize significant HVAC energy savings. Through the Airzone Aidoo Pro pilot program, they are continuing to innovate, enabling reliable integration and enterprise-grade control on highly efficient VRF units. “The demand for commercial VRF control is definitely there,” says Olsen. “With Verdant and Airzone, we can deliver it with ease.”
OTS R&D, Inc., in collaboration with the Copper Development Association (CDA), provides design support to optimize copper tube aluminum fin heat exchangers for commercial dehumidification. Problem In collaboration with the Copper Development Association (CDA) and OTS R&D, Inc. (OTS), AprilAire, a manufacturer of dehumidification equipment, they sought to maximize the performance of their products in both standard and low-temperature operating conditions while avoiding frost accumulation on the evaporator. Traditional dehumidifiers often lose efficiency as frost accumulates, leading to disruptions in conditioning and temporary spikes in humidity. Copper tube fin heat exchangers OTS supports innovation and next-generation product development using industry-pioneering software The question was whether small-diameter copper tube fin heat exchangers could maintain or increase efficiency while preventing frost accumulation in these unique operating conditions. OTS is a CDA partner that provides crucial heat transfer and system integration expertise to the industry, specifically in air conditioning, heat pumping, refrigeration, and energy conversion. Having roots with faculty and research at the University of Maryland, OTS supports innovation and next-generation product development using industry-pioneering software. Solution Through extensive research and simulation using the CoilDesigner® tool, the OTS project team explored various heat exchanger designs and airflow rates to identify optimal configurations. The study focused on reducing the outside diameter of the copper tubes from conventional values to 5mm and selecting copper as the tube material. The optimization study considered seven different tube fin geometries, ranging from 5mm OD options to 7.94mm OD tubes. Various parameters Using small-diameter copper tubes (5mm) provides several benefits for heat exchangers and overall advantages Various parameters such as fin density, coil height, number of tubes, circuitry, and airflow rates were analyzed to maximize dehumidification rate, efficiency, and frost avoidance while minimizing material consumption and refrigerant charge. Using small-diameter copper tubes (5mm) provides several benefits for heat exchangers and overall advantages for original equipment manufacturers (OEMs). Energy efficiency Reducing the diameter of copper tubes within coils offers a cost-effective avenue for enhancing system energy efficiency. While alternative methods might bolster system energy efficiency by increasing the number of conventional tubes, this approach incurs penalties such as augmented weight in tube and fin materials and heightened refrigerant volume. Conversely, reducing tube diameter fosters more efficient heat transfer and yields smaller, lighter coils. This reduction in materials can maintain or even enhance heat transfer efficiency while enabling smaller overall product dimensions, facilitating easier storage, transport, and installation, and ultimately reducing the footprint at the point of use. Significant advantage Coils constructed with CTAF or CTCF stand as enduring and reliable solutions within the industry Moreover, small-diameter copper tubes present a significant advantage in reducing refrigerant volume within systems. The diminished internal volume of the coils necessitates less refrigerant to charge, pioneering further benefits in system design, including a notable decrease in overall system weight. Coils constructed with copper tubes and aluminum fins (CTAF) or copper tubes and copper fins (CTCF) stand as enduring and reliable solutions within the industry, setting the standard for corrosion resistance and long-term service life. With a high level of familiarity across the supply chain, from tube suppliers to HVAC/R contractors, the transition to these innovative copper tubes ensures continuity in fabrication, assembly, installation, service, repair, and recyclability processes, maintaining efficiency and reliability throughout. Results After the project, the team identified 13 candidate designs meeting the product requirements, with seven using 5mm OD tubes and six using 7.94mm tubes. The optimized 5mm design showcased significant improvements over conventional designs, with a 5% increase in dehumidification rate and efficiency, a 15% reduction in material mass, and a 60% reduction in internal volume (refrigerant charge). The predicted efficiency at the standard rating condition exceeded the target requirement by 4%. substantial advantages The 5mm condenser variant was approximately 31% less deep in the airflow direction Comparing the 5mm and 7.94mm designs, the former offered substantial advantages regarding material consumption, material cost, and internal volume reduction while maintaining performance, achieving reductions of 42%, 48%, and 50%, respectively. Moreover, the 5mm condenser variant was approximately 31% less deep in the airflow direction, allowing for a larger evaporator depth and surface area. new level of dehumidification performance Cara Martin, CEO of OTS R&D, Inc., shares her insights on the project, stating, "The project utilized advanced simulation tools to identify viable heat exchanger combinations that unlock a new level of dehumidification performance in challenging conditions." "AprilAire will further review the wide range of design options for prototyping and testing, with the expectation that this effort will significantly cut down experimental trial and error in the product development process." commercial dehumidification applications By reducing tube diameter and selecting appropriate materials, manufacturers can achieve higher efficiency In conclusion, optimizing copper tube aluminum fin heat exchangers for commercial dehumidification applications represents a significant advancement in HVAC/R technology. By reducing tube diameter and selecting appropriate materials, manufacturers can achieve higher efficiency, lower material consumption, and improved performance in challenging operating conditions, ultimately enhancing user experience and satisfaction. customized design, simulation, testing, or evaluation Marcus Elmer, CDA Director of Tube and Fittings, adds, “At CDA, we understand that every project is unique and requires specialized guidance and expertise. That's why we work closely with our established partner network to provide customized design, simulation, testing, or evaluation support to OEMs like AprilAire." “By collaborating with CDA and our expert partners,” he continues, “you gain access to a wealth of resources, state-of-the-art facilities, and a deep understanding of the latest trends and technologies.”
In facilities with high volumes of foot traffic, the constant opening and closing of doors not only lets in chilly air but can cause heating problems for the entire building. Cold drafts bring the temperatures down, so while main rooms benefit from the warmth of the building’s primary heating system, many other areas are left to deal with the arctic side effects. Vestibules, lobbies, entranceways, and hallways are frequently populated, so it’s imperative that facilities hunker down and counteract the cold drafts left behind by those entering and leaving buildings. Opt for electric ceiling heaters To help neutralize these blustery winds, facilities should consider fan-forced wall heaters that provide continuous comfort through optimized airflow. Such units are ideal for entryways and other spaces where short bursts of heat are needed – providing a tremendous advantage over gentle heating sources that may not be powerful enough to provide the desired amount of warmth. However, if wall and floor space is minimal, facilities can instead opt for electric ceiling heaters. Mounted flat or recessed to the ceiling, these heaters are ideal not only for entryways but also in conference rooms, waiting areas, bathrooms, and lobbies. No matter the case, both products move heated air with a fan to quickly heat the room from the wall or ceiling. Once the heater turns on, the air is moved over a heating element and circulated into the space, making certain that residents are met with warmth and comfort from the time they enter the building until they leave. Specialized heating units Specialized heating units are designed to stop drafts in their tracks before they laid throughout a building Whether it’s through vents, unsealed windows or cracks and crevices in the building’s foundation, cold air will creep into facilities any way it can. This cool air can make indoor temperatures uncomfortable for occupants and reduce the overall heating efficiency of the facility. Specialized heating units are designed to stop drafts in their tracks before they spread throughout a building. Fan-forced wall and ceiling heaters with an automatic delay feature eliminate cold drafts on start-up and discharge residual heat from the heater body during the shutdown, helping attack drafts at their source, making the best use of available heat and prolonging the life of the heater. Equipped with integrated thermostats To maintain desirable comfort levels, facilities should consider fan-forced wall or ceiling heaters equipped with integrated thermostats or BMS connections for easy adjustment of room temperatures. A hotel’s vestibule, for example, may experience high amounts of foot traffic during check-in and check-out hours. Because fewer people are coming and going outside of these times, the adjustable thermostat feature allows facilities to alter their heating output needs to ensure heat is not misused and temperatures remain comfortable. For commercial fan-forced wall heaters with striking designs and contemporary looks, Berko® and QMark® offer units to match any room’s décor while supplying an appropriate amount of warmth no matter the time of year. Safety First Fan-forced wall or ceiling heaters are built with easily accessible power on/off switches for safety Safety and style go hand-in-hand. While selecting a heater that fits a building’s esthetic is important, opting for a high-quality product that protects against common safety risks should be a top-of-mind priority. Fan-forced wall or ceiling heaters are built with easily accessible power on/off switches for added safety during maintenance. Tamper-proof plugs for thermostat holes prevent unwanted changes to the temperature and keep children and pets from getting into places they shouldn’t. All fan-forced units also come with thermal overheat protectors that disconnect power in the event of accidental dust or debris blockages to mitigate the risk of injury. Additionally, heaters that include permanently lubricated and enclosed fan motors are shown to have longer lives, require less maintenance and gently administer heat throughout a space. Keep in mind that some heaters are noisier than others, so make sure to choose one powerful enough to negate drafts but quiet enough to prevent disturbances from interrupting daily activities. Maintaining Warmth and Comfort Drafts bring cold air and a lasting chill into heated spaces every time a door opens, especially during the colder months. To offset the frigidness, consider installing a fan-forced wall or ceiling heater to regain suitable levels of warmth and comfort for all building occupants. Berko and QMark’s commercial fan-forced wall and ceiling heaters provide the strongest, safest sources of heat for those chilly spaces.
Nearly Bergamo, Italy, there is a weather station that collects meteorological data and monitors air quality. Its operation requires professional equipment that, however, works without a permanent power supply or the presence of staff. Such conditions put the equipment and other assets at risk. In fact, the station had already suffered from several intrusion attempts and needed a security system to be put in place. Challenge Protect a remote object without a permanent power supply Like many remote objects, the weather station does not have a permanent power supply and cannot afford a full-time presence of staff members on the site. After several intrusion attempts, the client needed to secure an area of 600 square meters, prevent equipment theft, and put an end to the damage made to the agricultural produce growing on the site. They looked for a professional security system that could operate outdoors without mains power and was easy to manage remotely. Solution Wireless outdoor security system with flexible power options and remote control The implemented security system consists of 11 Ajax devices, coupled with a third-party solar panel, battery, and case In response to the challenge, Von Wunster Next s.r.l. configured a solution for securing the object that has no permanent power source or staff on-site but has extensive sun exposure. The implemented security system consists of 11 Ajax devices, coupled with a third-party solar panel, battery, and case. At the core of the system, there is a Hub 2 (2G) Jeweller control panel with a low-voltage PSU 6V. The latter allows the hub to operate from an external 7 A h battery for years. The battery, in turn, is charged via the 25 W solar panel (10 A). If the external power supply fails, the hub switches to a built-in battery and continues to protect the object for up to 16 hours or even 60 hours if the Battery Power Saver feature is enabled. The client and central monitoring station of the security company instantly receive a notification about the power issue to be fixed. The company has enough time to get to the remote object for restoring power without compromising its security. A SIM card (2G) ensures connection with the network, so Von Wunster Next s.r.l. won’t miss a thing. StreetSiren DoubleDeck Other elements of the security system are wireless outdoor Ajax devices that operate with pre-installed batteries for up to 3 years. Several MotionCam Outdoor Jeweller cover the perimeter and detect movement within seconds. The device’s photo-by-alarm feature allows minimizing expensive patrol dispatches to false alarms and gives the client peace of mind. StreetSiren DoubleDeck activates the sound of up to 113 dB and bright LED indicators in response to an alarm to deter and expose intruders. Communication with the wireless devices is provided via Ajax proprietary radio protocols Jeweler and Wings at a distance of up to 2,000 m. It’s perfect for covering large areas such as that of the station. Ajax SpaceControl Jeweller key fobs Dealing with the security system is as easy as it gets for both the client and the security company The client can control security modes effortlessly. There are four end users with different rights, and they can manage the system in the Ajax app on their phones and with wireless Ajax SpaceControl Jeweller key fobs. Von Wunster Next s.r.l., which installed the system and conducts monitoring, can track the devices’ status and take care of their configuration and maintenance remotely in the majority of cases. Dealing with the security system is as easy as it gets for both the client and the security company. All the devices are either weather-resistant or reliably hidden in the case to withstand the impacts of the environment. Constant exposure to rain or sun does not affect the security system. Why Ajax Flexible power supply options. Ajax's product portfolio includes PSUs designed to connect the system to a low-voltage power supply even when no permanent power source is available. Wireless Ajax devices operate with pre-installed batteries for up to 3 years. Visual alarm verification. With photo verification, system users and monitoring company operators can promptly verify whether an alarm is real and save costs on patrol dispatches. It is a particularly important feature for remote objects. Remote system management. The system can be managed, configured, and maintained through Ajax apps with no people present on-site, which is a cost-effective solution for a remote object. Products Hub 2 (2G) Jeweller - Security system control panel with support for photo verification MotionCam Outdoor Jeweller - Wireless outdoor motion detector with a photo camera to verify alarms 6V PSU for Hub 2/Hub 2 Plus/ReX 2 - Power supply unit for operation of the device from portable battery StreetSiren DoubleDeck Jeweller - Wireless outdoor siren with a clip lock for a branded faceplate Ajax SpaceControl Jeweller - A key fob for controlling security modes
When Harry Lau, Administrator for Facilities and Operations for the Livonia Public Schools, joined the district in 2013, he identified a significant need to improve the HVAC equipment throughout the entire school system. All 25 buildings, including schools and administration offices, had significant inefficiencies with their HVAC systems. The infrastructure was outdated and the horizontal unit ventilators that were in use were from the 1950s and 60s and were well beyond their life expectancy. The old units were prone to freezing, and there were control issues that further exacerbated the problem. Poor indoor air quality (IAQ) and inefficient temperature controls led to discomfort among staff and students, impacting the overall learning environment. His primary goal was to reduce the number of environmental air quality concerns, reduce district utility and maintenance costs, and improve the overall comfort and air quality throughout the system. The Solution To address these issues, Livonia Public Schools secured funds via a successful bond measure To address these issues, Livonia Public Schools secured funds through a successful bond measure. There were multiple contractors and manufacturers involved for the entire system upgrade, but for the classrooms specifically, the district chose to upgrade to Airedale by Modine Classmate® vertical units. Looking at the specifications of these units, Harry was certain the Classmate® would meet their needs. The previous units had structural and design issues that led to multiple repairs, and Harry knew that they would have fewer maintenance issues with the Classmate® because of the way they are designed. They also chose to modernize control of the system by implementing a building management system allowing for real-time monitoring and centralized management of the HVAC systems across all buildings. The Results The HVAC system upgrades have resulted in dramatic improvements in IAQ and energy efficiency. The new systems have provided better temperature control, faster cooling, and heating, and have reduced energy consumption by 20%. The upgraded systems also led to a quieter environment, enhancing the learning experience. The ability to monitor and manage the HVAC systems in real time has allowed for proactive maintenance and further cost savings. Harry said he wanted the classroom instructors to have some anonymity with temperature control. While the set points follow ASHRAE recommendations, the units are equipped to give the teachers some control to bump the temperature up or down a few degrees to suit their comfort level and those of the students. "With partners like Modine, they opened our eyes on ways of doing things," said Harry Lau, adding "It has been refreshing to actually be heard by the professionals." Implementation of HVAC upgrades Livonia Public Schools has been recognized by the U.S. DOE’s Efficient and Healthy Schools Program Because of their commitment to improving IAQ and energy efficiency, Livonia Public Schools has been recognized by the U.S. Department of Energy’s Efficient and Healthy Schools Program. This program recognizes and assists school districts seeking to implement high-impact indoor air quality and efficiency improvements. They were honored for optimizing their operations to improve building performance. The district was also recognized by the city as a green energy partner. Harry said that the classroom learning environments have been dramatically updated and they have seen a significant improvement. The consistent modulation of the fresh air has been greatly noticed. Livonia Public Schools’ proactive approach to HVAC upgrades A huge point of pride for the district was being able to confidently inform their staff and parents that they were ahead of the curve in ensuring quality indoor air once students and staff were able to return to indoor classroom learning during the COVID-19 pandemic. Livonia Public Schools’ proactive approach and successful implementation of HVAC upgrades have set a benchmark for other districts aiming to improve their learning environments through better air quality and energy efficiency.
Round table discussion
The HVAC market is a rapidly changing environment on a variety of fronts, from the introduction of new refrigerants to the increasing use of artificial intelligence to the embrace of interconnected systems in the Internet of Things (IoT) environment. We asked our Expert Panel Roundtable: How will the HVAC market change in the next five years?
For schools, improving indoor air quality (IAQ) is a basic function of HVAC systems, which also ensures a high comfort level for students, teachers and staff. Schools can be a lucrative market for HVAC systems, but there are challenges, such as long sales cycles and the lingering impact of the COVID-19 pandemic. We asked our Expert Panel Roundtable: What are the challenges for HVAC in serving the education/schools market?
A long list of regulatory and environmental trends is determining the future of the HVAC industry. Some trends will have an immediate impact, while others will come in force years from now, although the complexity of the industry requires that manufacturers and installers start planning now. We asked our Expert Panel Roundtable: What regulatory or environmental trend will have the greatest impact on the HVAC market?
Products
White papers
Sealed Connectors: Enhancing HVAC System Performance And Longevity
DownloadHarness The Heat, Pump Up The Savings
DownloadHVAC Systems In Harsh Environments
DownloadAir-Cleaning And Filtration
DownloadFuture Proofing Your Building
DownloadAdopting Low-GWP Refrigerants In Industrial Refrigeration, Heating And Energy Solutions
DownloadHot Gas Defrost Of Low Temperature Refrigeration Evaporators With Natural Refrigerants
DownloadAdapt To SNAP: Navigating The EPA's Final Refrigerant Rule
DownloadBenefits Of Solstice® ze In Commercial And Industrial Applications
Download