Heat Recovery Ventilator VH30120R

CLEAN COMFORT INDOOR AIR ESSENTIALS

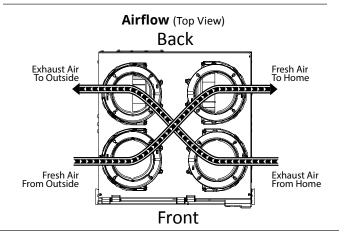
Features

- Four operating modes (Intermittent, Continuous, Recirculation and High)
- 100% variable speed
- ISF™ (Insert, Slide and Fix) 6" (127 mm) oval collar system
- Advanced proportional supply fan shut-down defrost sequence
- Factory-installed, adjustable hanging strap system
- Dual permanently lubricated PSC motors
- · Integrated auxiliary furnace interlock relay
- Ventilator can be balanced by adjusting each motor independently; no balancing dampers required
- Connection terminals for optional wall controls
- Quiet operation

Heat Recovery Core

- · Transfers sensible heat
- · Effective in warm and cold climates
- Water washable

Optional Accessories


Matrix 2-in-1 high-performance concentric ventilation hood

Certifications and Standards

- HVI Certified
- CSA C439 Standard (Packaged Heat/Energy Recovery Ventilators (HRV/ERV))
- CSA Standard CSA 22.2 NO.113-10 (Fans and ventilators)
- UL Standard 1812 2nd Ed. Ducted Heat/Energy Recovery Ventilators (HRV/ERV)

Proprietary Notice

This document and the information disclosed herein are proprietary data of Daikin North America LLC. Neither this document nor the information contained herein shall be reproduced, used, or disclosed to others without the written authorization of Daikin North America LLC except to the extent required for installation or maintenance of recipient's equipment.

Liability Notice

Daikin North America LLC does not accept any liability for installations of ventilation equipment installed by unqualified personnel or the use of parts/components/equipment that are not authorized or approved by Daikin.

Copyright Notice

Copyright 2015, Daikin North America LLC All rights reserved.

9/15

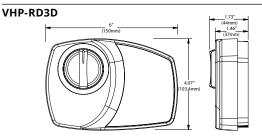
Specifications VH30120R Cabinet **Dimensions** 26-1/32"x 16-1/32" x 21" (675.6 mm x 421.6 mm x 533.4 mm) 20-gauge galvanized pre-painted Construction steel corrosion-resistant liner: molded expanded Polystyrene (EPS) Rated UL94 HF-1 Duct Connections Four, 6" (152.5 mm) dia. ISF double collar system **Airflow Rates** 30 CFM (14 L/s) to 120 CFM (57 L/s) Motors Two PSC variable-speed backward curved Maximum RPM 2695; 3/32 HP, class F, thermally protected 120 VAC @ 60 Hz / 1 Phase Voltage **Amperage** 1.5 A / 142 W **Electronic** Circuit output voltage: Components 5VDC nominal RoHS compliant Heat Exchanger Polypropylene HRV Core

Construction	Corrugated cross-flow polypropylene layers Recognized UL94 HB and HF-1				
Defrost type	Recirculation				
Filters	Two Fiberbond washable				
Drain Connection	½" (12.7 mm)				
Actual Weight	47 lbs (21.3 Kg)				

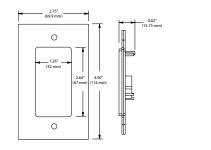
56 lbs (25.4 Kg)

10"L x 10⁷/₈"W x 10"D (254 mm x 275 mm x 254 mm)

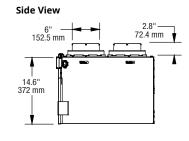
Optional Wall Controls

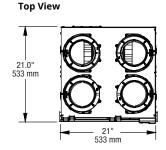

Exchange surface 98 ft² (9.1 m²)

Dimensions

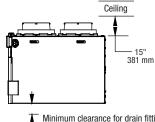

Shipping Weight

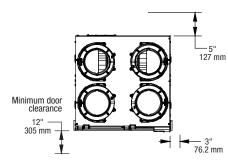
Mechanical	VHP-RD3D
Timers	VHP-T3 (20, 40, 60 minutes)


Wall Control Dimensions



VHP-T3 Timer


Dimensional Data


Minimum Clearance Data

Side View

Minimum clearance for drain fitting Recomended minimum clearance for "P" trap of 10" (254 mm)

Top View

Venti								
Externa Pres			Supply		Airflow oply	Gross Airflow Exhaust		
Pa	Pa In. wg L/s CFM L/s		L/s CFM		CFM	L/s	CFM	
25	0.1	55	116	55	117	67	142	
50	0.2	50	107	51	109	62	132	
75	0.3	46	98	47	100	57	122	
100	0.4	42	90	43	91	53	112	
125	0.5	38	81	39	83	49	103	
150	0.6	34	73	35	74	44	94	
175	0.7	30	64	31	65	40	85	

			-	Sup	ply	-]-E>	khau	ıst								
		150		5												П	
	(61,	125				\vdash	1			_	_		_	_		Н	
	cfm (L/s = n x 0.4719)	100			7		4	k	1		7	_	_	_	_	Н	
	Z II	75							_		7	_	\	_	7		
	(L/s:	50													_		
	cfm	25															
1		Ü	0	.1	0	.2	0	.3	0.	4	0.	.5	0.	6	0.	.7	
						Ext	err	nal	Sta	tic	Pr	essi	ure	è			
						in۱	wg	(P	a =	n x	24	48.3	36)				

Energy Performance											
Suppl	y Temp	erature	Net A	irflow	Power	Sensible Recovery Efficiency					
	°C	°F	L/s	CFM	Consumed (Watts)						
	0	32	24	50	70	64					
Heating	0	32	31	65	84	62					
Неа	0	32	41	86	106	59					
	-25	-13	31	66	94	55					